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Automatically Verified Computation with
Intervals, Probability Distributions and

Uncertain Numbers

Invited Speaker: Scott Ferson

Applied Bioinformatics
100 North Country Road
Setauket, NY 11733 USA

scott@ramas.com

Abstract

Uncertainty propagation methods have often been disjoint and incomplete. In-
tervals alone cannot generally account for functional or stochastic dependence
among variables, so propagations of interval uncertainty risk exploding to triv-
iality. The dream of a workable “probabilistic arithmetic”, imagined by many
people, seems unachievable in practice. Whenever probability theory has been
used to make calculations, analysts have routinely made untenable assumptions
that ignore doubts about the model structure, the shape or precision of distribu-
tion specifications, and the character of stochastic dependence among variables.
Until recently, such assumptions without any empirical justification have been
common – even in relatively sophisticated and high-profile assessments such as
risk analyses for space expeditions – because alternative methods that did not
require these assumptions had not been available. New methods now allow us
to compute often best-possible bounds on estimates of probabilities and prob-
ability distributions that are guaranteed to be correct even when one or more
of the assumptions is relaxed or removed. This talk will present an overview
of probability bounds analysis, as a computationally practical implementation
of imprecise probabilities, that combines ideas from both interval analysis and
probability theory to sidestep the limitations of each.

Invited Speaker’s Bio

Scott Ferson is a senior scientist at Applied Biomathematics, a small-business
research firm on Long Island, New York, and an adjunct at the School of Marine
and Atmospheric Sciences. He holds a Ph.D. in ecology and evolution from Stony
Brook University and has over 100 papers and 5 books on risk analysis and
related topics. His recent work, funded primarily by NIH and NASA, has focused
on developing statistical methods and software to solve quantitative assessment
problems when data are poor or lacking and structural knowledge is severely
limited.
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Linguistic Project Scheduling using Type-2
Fuzzy Sets

Invited Speaker: Juan Carlos Figueroa

Universidad Distrital
Departamento de Ingenieria Industrial

Bogota, Colombia
jcfigueroag@udistrital.edu.co

Abstract

Project scheduling using PERT techniques are widely known among decision
makers, due to its interpretability and simplicity. Sometimes, when starting a
project, there is no complete information about the runtimes of the tasks of
the project, so the analyst has to ask the experts of the project for information
about them. The information provided by experts is in many cases based on its
perception and expertise about each task, it is expressed using words instead of
numbers, so there is a need for computing with words.

This way, Type-2 fuzzy sets seem to be an appropriate tool for dealing with
uncertainty coming from perceptions and words, so what we propose is the use
Type-2 fuzzy sets to represent the knowledge of multiple experts regarding the
concept (word) of expected runtime of a task. Using linear programming models,
we compute a set of possible Critical Paths that can happen depending on dif-
ferent uncertainty degrees, which are useful to see how the project does change
in different pessimistic and optimistic scenarios.

Invited Speaker’s Bio

Juan Carlos Figueroa-Garćıa was born in Bogotá - Colombia. He obtained a
M.Sc.’s degree in Industrial Engineering at the Universidad Distrital Francisco
José de Caldas in Bogotá in 2010, and currently is doing a Ph.D. studies in
Engineering (optimization and operations research) at the National University
of Colombia in Bogotá.

He has been an Assistant Professor in the Universidad Distrital Francisco
José de Caldas in Bogotá since 2007, and a researcher in the National University
of Colombia since 2010. His main interests are fuzzy linear programming, fuzzy
statistics, fuzzy stochastic processes and mathematical modeling.

He is member of the IEEE Computational Intelligence Society, NAFIPS
member, and ICIC (International Conference on Intelligent Computing) steering
committee member. He has been awarded with the NAFIPS 2010 Outstanding
paper award, the ICIC 2010 Best paper award, IFORS’ grant for ELAVIO 2012,
2012 IFSA’s Young scientist award, and NAFIPS 2013 Intervals session Best
student paper award.
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An Approximation Method for a System of
Mixed Equilibrium Problems

B. Djafari-Rouhani1, K. R. Kazmi2, and S. H. Rizvi2

1 Department of Mathematical Sciences
University of Texas at El Paso (UTEP),

500 W. University Ave., El Paso, Texas 79968, USA
behzad@utep.edu

2 Department of Mathematics, Aligarh Muslim University
Aligarh 202002, India, krkazmi@gmail.com, shujarizvi07@gmail.com

Abstract. In this paper, we introduce an iterative method based on hy-
brid method, extragradient method and convex approximation method
for finding a common element to the set of solutions of a system of
unrelated equilibrium problems and the set of solutions to a common
fixed-point problem for a family of nonexpansive mappings. We call it
hybrid-extragradient-convex approximation method. We define the no-
tion of a 2-monotone bifunction which is a natural extension of a 2-
cyclically monotone operator. Further, we obtain a strong convergence
theorem for the sequences generated by the proposed iterative scheme.
Finally, we derive some consequences from our main result. The results
presented in this paper extend and unify many of the previously known
results in this area.

Keywords: System of unrelated equilibrium problems; common fixed-
point problem; hybrid-extragradient-convex approximation method; 2-
monotone bifunction; nonexpansive mapping; inverse-strongly monotone
mapping; iterative scheme.

2000 Mathematics subject classifications: 49J30, 47H10, 47H17,
90C99

1 Introduction

Let H be real Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥. For

each i = 1, 2, ..., N , let Ki be a nonempty closed convex set with
N∩
i=1

Ki ̸= ∅; let

Fi : Ki ×Ki → R, where R is the set of real numbers, be a bifunction such that
Fi(x, x) = 0, ∀x ∈ Ki, and let Ai : Ki → H be a nonlinear mapping. Then, we
consider the following new system of mixed equilibrium problems, which we call
the system of unrelated mixed equilibrium problems (in short, SUMEP): Find

x ∈
N∩
i=1

Ki such that

Fi(x, yi) + ⟨Aix, yi − x⟩ ≥ 0, ∀yi ∈ Ki, i = 1, 2, ..., N. (1)
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We note that for each i = 1, 2, ...., N, the mixed equilibrium problem (in
short, MEP) [1] is to find xi ∈ Ki such that

Fi(xi, yi) + ⟨Aixi, yi − xi⟩ ≥ 0, ∀yi ∈ Ki, i = 1, 2, ..., N. (2)

We denote by MEP(Fi, Ai,Ki), the set of solutions of MEP(2) corresponding to
the mappings Fi, Ai and the set Ki. Then the set of solutions of SUMEP(1) is

given by
N∩
i=1

MEP(Fi, Ai,Ki). If N = 1, then SUMEP(1) is the well known mixed

equilibrium problem (MEP) introduced by Moudafi and Théra [1]. If Fi = 0,
SUMEP(1) reduces to the system of unrelated variational inequality problems
(in short, SUVIP) considered and studied by Censor et al. [2] for set-valued
version of mappings Ai. If N = 1 and Fi = 0, then SUMEP(1) reduces to the
classical variational inequality problem (in short, VIP) introduced by Hartmann
and Stampacchia [3]. If Ai = 0, SUMEP(1) reduces to the system of unrelated

equilibrium problems (in short, SUEP) of finding x ∈
N∩
i=1

Ki such that

Fi(x, yi) ≥ 0, ∀yi ∈ Ki, i = 1, 2, ..., N. (3)

The set of solutions of SUEP(3) is denoted by EP(Fi,Ki). If N = 1, SUEP(3)
reduces to the well known equilibrium problem (in short, EP) introduced by
Blum and Oettli [4]: Find x ∈ K1 such that

F1(x, y1) ≥ 0, ∀y1 ∈ K1. (4)

The solution set of EP(4) is denoted by EP(F1).
We also observe that if Fi = 0 and Ai = 0 for all i, then SUMEP(1) reduces

to the problem of finding a point x ∈
N∩
i=1

Ki which is the well known convex

feasibility problem (in short, CFP). If the sets Ki are fixed point sets of a family
of operators Si : H → H, then the CFP is the common fixed point problem (in
short, CFPP).

Recall that a mapping Si : Ki → H is nonexpansive if

∥Six− Siy∥ ≤ ∥x− y∥, ∀x, y ∈ Ki.

We denote the fixed point set of Si by Fix(Si) for each i = 1, 2, ...N. We note
that Fix(Si) is closed and convex, possibly empty (see e.g.[5]).

Motivated and inspired by the work of Nadezhkina and Takahashi [6], Peng
and Yao [7], Censor et al. [2] and ongoing research in this direction, we introduce
an iterative method based on hybrid method, extragradient method and convex
approximation method for finding a common element of the set of solutions
to SUMEP(1) and the set of solutions to CFPP of a family of nonexpansive
mappings. We call it hybrid-extragradient-convex approximation method. We
define the notion of a 2-monotone bifunction which is a natural extension of a
2-monotone operator. Further, we obtain a strong convergence theorem for the

4



sequences generated by the proposed iterative scheme. Then, we derive some
consequences from our main result, which are also new. The result presented in
this paper gives a unified treatment of some well known problems such as CFP,
CFPP and SUVIP. The following is assumed in our main result.

Assumption 1 [4] Let F : C ×C −→ R be a bifunction satisfying the following
assumptions:

(i) F (x, x) = 0, ∀x ∈ C;
(ii) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;
(iii) For each y ∈ C, x → F (x, y) is hemi-uppersemicontimuous, i.e. for each

x, y, z ∈ C, lim sup
t→0+

F (tz + (1− t)x, y) ≤ F (x, y);

(iv) For each x ∈ C, y → F (x, y) is convex and lower semicontinuous.

2 Main Result

We prove the strong convergence of an iterative scheme based on hybrid method,
extragradient method and convex approximation method which solves the prob-
lem of finding a common element to the solution set of SUMEP(1) and CFPP
involving a family of nonexpansive mappings.

Theorem 1. For each i = 1, 2, ..., N , let Ki be a nonempty closed convex subset

of a real Hilbert space H with
N∩
i=1

Ki ̸= ∅. Let Fi : Ki × Ki → R be a 2-

monotone bifunction satisfying the Assumption 1, and the mapping Ai : Ki →
H be σi-inverse strongly monotone. For each fixed i, let Si : Ki → H be a

nonexpansive mapping such that Ω =
N∩
i=1

(Fix(Si))
∩(

N∩
i=1

MEP(Fi, Ai,Ki)

)
̸=

∅. Let the iterative sequences {xn}, {yni } and {zni } be generated by the following
iterative schemes:

x0 = x ∈ H,

yni = Trni
(xn − rni Aix

n), (5)

zni = αn
i x

n + (1− αn
i )SiTrni

(xn − rni Aiy
n
i ), (6)

Cn
i = {z ∈ H : ∥zni − z∥2 ≤ ∥xn − z∥2}, (7)

Cn =

N∩
i=1

Cn
i (8)

Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0}, (9)

xn+1 = PCn∩Qnx, (10)

for n = 1, 2, ..., and for each i = 1, 2, ..., N where {rni } ⊂ [a, b] for some a, b ∈
(0, σ) and {αn

i } ⊂ [0, c] for some c ∈ [0, 1), where σ := min
1≤i≤N

σi. Then the

sequences {xn}, {yni } and {zni } converge strongly to d = PΩx.
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The following corollary is due to [2] where Ai are single-valued mappings.

Corollary 1. [2] For each i = 1, 2, ..., N , let Ki be a nonempty closed and convex

subset of a real Hilbert space H with
N∩
i=1

Ki ̸= ∅; let the mapping Ai : Ki → H

be σi-inverse strongly monotone. Assume that Ω =
N∩
i=1

(SUVIP) ̸= ∅. Let the

iterative sequences {xn}, {yni } and {zni } be generated by the following iterative
scheme:

x0 = x ∈ H,

yni = PKi(x
n − rni Aix

n)

zni = PKi(x
n − rni Aiy

n
i ),

Cn
i = {z ∈ H : ∥zni − z∥2 ≤ ∥xn − z∥2},

Cn =

N∩
i=1

Cn
i

Qn = {z ∈ H : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx,

for n = 1, 2, ..., and for each i = 1, 2, ..., N , where {rni } ⊂ [a, b] for some a, b ∈
(0, σ), where σ = min

1≤i≤N
σi. Then the sequences {xn}, {yni } and {zni } converge

strongly to d = PΩx.

3 Conclusion and Future Directions

We introduced an iterative scheme for finding a common element to the set
of solutions of a system of unrelated equilibrium problems and the common
fixed point set of a family of nonexpansive mappings, and proved the strong
convergence of the sequences generated by the scheme to that element. Future
directions to be pursued in the context of this research include the investigation
of the problem when the operators Ai are set-valued operators as in [2], as well
as the investigation of the convergence analysis for a regularized problem with
perturbed data as in [9].
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Algebraic Product is the Only t-Norm for Which
Optimization Under Fuzzy Constraints is

Scale-Invariant

Juan Carlos Figueroa Garcia1, Martine Ceberio2, and Vladik Kreinovich2

1 Universidad Distrital, Departamento de Ingenieria Industrial
Bogota, Colombia, filthed@gmail.com

2 Department of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA, mceberio@utep.edu, vladik@utep.edu

Abstract. In many practical situations, we need to optimize under
fuzzy constraints. There is a known Bellman-Zadeh approach for solv-
ing such problems, but the resulting solution, in general, depends on the
choice of a not well-defined constant M . We show that this dependence
disappears if we use an algebraic t-norm (and-operation) f&(a, b) = a · b,
and we also prove that the algebraic product is the only t-norm for which
the corresponding solution is independent on M .

1 Formulation of the Problem

Need for optimization under fuzzy constraints. In decision making, we would like
to find the best solution x among all possible solutions.

For example, if we need to build a chemical plant for producing chemicals
needed for space exploration and for sophisticated electronics, then we need to
select a design which is the most profitable among all the designs whose possi-
ble negative effect on the environment is small. In this example, the objective
function is the overall profit.

In this example (and in many similar examples) the objective functions is
well defined in the sense that for each alternative x, we can compute the exact
value f(x) of the objective function for this particular design. In contrast, the
constraints are not well-defined, they are formulated by using words from a
natural language (like “small”), words which are nor precise.

A reasonable way to describe the meaning of such imprecise (“fuzzy”) con-
straints is to use techniques of fuzzy logic (see, e.g., [4, 6, 8]), where to each
possible alternative x, we assign a number µc(x) describing to what extent this
design satisfies the corresponding constraint. To find this value µc(x), we can,
e.g., ask the user to mark this extent on a scale from 0 to 10, and if the user
marks 7, take µc(x) = 7/10.

This way, the original problem becomes a problem of optimization under
fuzzy constraint: find x for which f(x) is the largest possible among all x which
satisfy the constraint described by a function µc(x).
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Bellman-Zadeh approach to optimization under fuzzy constraints. To solve such
problems, R. Bellman (a known specialist in optimization) and L. Zadeh (the
founder of the fuzzy logic approach) came back with the following idea; see, e.g.,
[1, 4].

First, we (somehow) find the smallest value m of the objective function f(x)
among all possible solutions x, and we also find the largest possible value M of
the objective function over all possible constraints. based on the values m and
M , we can form, for each alternative x, the degree µm(x) to which x is maximal,

as µm(x)
def
=

f(x)−m

M −m
. The larger f(x), the larger this degree, and it reaches

the value 1 if f(x) attains the largest possible value M .

We want to find an alternative which satisfies the constraints and opti-
mizes the objective function. In fuzzy techniques, the degree of truth in “and”-
statement is approximately described by applying an appropriate t-norm f(a, b)
to the degrees to which both statements are true; see, e.g., [4, 6]. A t-norm
must satisfy several natural properties: e.g., the fact that A&B means the
same as B&A leads to the commutativity f&(a, b) = f&(b, a), and the fact
that “true”&A is equivalent to just A leads to the property f&(1, a) = a.

– By applying the t-norm f&(a, b) to the degrees µc(x) and µm(x), we find the
degrees µs(x) = f&(µc(x), µm(x)) to which each alternative x is a solution.

– We then select the alternative which is the best fit, i.e., for which the degree
µs(x) is the largest.

Problem: the value M is not well defined. Usually, we have some prior experience
with similar problems, so we know some alternative(s) x which were previously
selected. The value f(x) for such “status quo” alternatives can be used as the
desired minimum m.

Finding M is much more complicated, we do not know which alternatives to
include and which not to include. If we replace the original value M with a new

value M ′ > M , then the maximizing degree changes, from µm(x) =
f(x)−m

M −m

to µ′
m(x) =

f(x)−m

M ′ −m
. One can easily see that µ′

m(x) = λ · µm(x) for λ
def
=

M −m

M ′ −m
< 1.

The problem is that in general, the alternatives for which the functions
µs(x) = f&(µc(x), µm(x)) and µ′

s(x) = f&(µc(x), µ
′
m(x)) = f&(µc(x), λ · µm(x))

may be different.

It is therefore desirable to come up with a scheme in which the solution
would not change if we simply re-scale µm(x) by modifying the not well-defined
quantity M .

What we do in this paper. In this paper, we show that the dependence on M
disappears if we use algebraic product t-norm f&(a.b) = a · b. We also show that
this is the only t-norm for which decisions do not depend on M .
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2 Main Results

Definition 1. By a t-norm, we mean a function f& : [0, 1] × [0, 1] → [0, 1] for
which f&(a, b) = f&(b, a) and f&(1, a) = a for all a and b.

Comment. Usually, it is also required that the t-norm is associative. However,
our results do not need associativity, so they are valid for non-associative and-
operations as well; such non-associative operations are sometimes used to more
adequately describe human reasoning; see, e.g., [2, 3, 5, 7, 9].

Definition 2. Let f&(a, b) be a t-norm. We say that optimization under fuzzy
constraints is scale-invariant for this t-norm if for every set X, for every two
functions µc : X → [0, 1] and µm : X → [0, 1], and for every real number
λ ∈ (0, 1), we have S = S′, where:

• S is the set of all x ∈ X for which the function µs(x) = f&(µc(x), µm(x))
attains its maximum, i.e., for which µs(x) = max

y∈X
µs(y);

• S′ is the set of all x ∈ X for which the function µ′
s(x) = f&(µc(x), λ ·µm(x))

attains its maximum, i.e., for which µ′
s(x) = max

y∈X
µ′
s(y).

Proposition 1. For the algebraic product t-norm f&(a, b) = a · b, optimization
under fuzzy constraints is scale-invariant.

Proposition 2. The algebraic product t-norm f&(a, b) = a · b is the only t-norm
for which optimization under fuzzy constraints is scale-invariant.

Proof of Proposition 1. For the algebraic product t-norm:

• S is the set of all x ∈ X for which the function µs(x) = µc(x) ·µm(x) attains
its maximum, and

• S′ is the set of all x ∈ X for which the function µ′
s(x) = µc(x) · λ · µm(x)

attains its maximum.

Here, µ′
s(x) = λ · µs(x) for a positive number λ. Clearly, µs(x) ≥ µs(y) if and

only if λ · µs(x) ≥ λ · µs(y), so the optimizing sets S and S′ indeed coincide.

Proof of Proposition 2. Let f&(a, b) be a t-norm for which optimization under
fuzzy constraints is scale-invariant, and let a and b be two number from the
interval [0, 1]. Let us prove that f&(a, b) = a · b.

Let us consider X = {x1, x2} with µc(x1) = µm(x2) = a and µc(x2) =
µm(x1) = 1. In this case, µs(x1) = f&(µc(x1), µm(x1)) = f&(a, 1). Due to
commutativity, we get µs(x1) = f&(1, a) and due to the second property of
the t-norm, we get µs(x1) = a.

Similarly, we have µs(x2) = f&(µc(x2), µm(x2)) = f&(1, a). Due to the sec-
ond property of the t-norm, we also get µs(x2) = a.

Since µs(x1) = µs(x2), the optimizing set S consists of both elements x1 and
x2.
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Due to scale-invariance, for λ = b, the same set S′ = S = {x1, x2} must be
the optimizing set for the function µ′

s(x) = f&(µc(x), λ · µm(x)). Thus, we must
have µ′

s(x1) = µ′
s(x2), i.e., f&(a, b · 1) = f&(1, b · a). So, f&(a, b) = f&(1, a · b).

Due to the second property of the t-norm, we conclude that f&(a, b) = a · b.
The proposition is proven.
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Abstract. In many practical situations, people judge their overall ex-
perience by only taking into account the peak and the last levels of
pleasantness or unpleasantness. While this peak-end rule is empirically
supported by numerous psychological experiments, it seems to contradict
our general theoretical ideas about people’s preferences. In this paper, we
show that, contrary to this impression, the end-peak rule can be justified
based on the main ideas of the traditional utility-based decision theory.

1 Peak-End Rule: Description and Need for an
Explanation

Peak-end rule: empirical fact. In many situations, people judge their overall
experience by the peak and end pleasantness or unpleasantness, i.e., by using
only the maximum (minimum) and the last value; see, e.g., [1, 4].

This is true for people’s perception of the unpleasantness of a medical pro-
cedure, of the quality of the cell phone perception, etc.

Need for an explanation. There is a lot of empirical evidence supporting the
peak-end rule, but not much of an understanding. However, at first glance, the
rule appears somewhat counter-intuitive: why only peak and last value? why
not some average? In this paper, we provide such an explanation based on the
traditional decision making theory.

2 Towards an Explanation

Traditional decision making theory: a brief reminder of utility approach. Our
objective is to describe the peak-end rule in terms of the traditional decision
making theory. According to decision theory, preferences of rational agents can
be described in terms of utility (see, e.g., [2, 3]): a rational agent selects an action
with the largest value of expected utility.

Utility is not uniquely defined. Utility is usually defined modulo a linear transfor-
mation. In the above experiments, we usually have a fixed status quo level which
can be taken as 0. Once we fix this value at 0, the only remaining non-uniqueness
in describing utility is scaling u → k · u.
Need for a utility-averaging operation. We want to describe the “average” utility
corresponding to a sequence of different experiences. We assume that we know
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the utility corresponding to each moment of time. To get an average utility value,
we need to combine these momentous utilities into a single average.

If we have already found the average utility corresponding to two consequent
sub-intervals of time, we then need to combine these two averages into a single
average corresponding to the whole interval. In other words, we need an operation
a∗b that, given the average utilities a and b corresponding to two consequent time
intervals, generates the average utility of the combined two-stage experience.

Natural properties of the utility-averaging operation.

1) If we had the same average utility level a = b on both stages, then this
same value should be the two-stage average, i.e., we should have a ∗ a = a. In
mathematical terms, this means that the utility-averaging operation ∗ should be
idempotent.

2) If we make one of the stages better, then the resulting average utility should
increase (or at least not decrease) as well. In other words, the utility-averaging
operation ∗ should be monotonic in the sense that if a ≤ a′ and b ≤ b′ then
a ∗ b ≤ a′ ∗ b′.

3) Small changes in one of the stages should lead to small changes in the overall
average utility; in precise terms, this means that the function a ∗ b must be
continuous.

4) For a three-stage situation, with average utilities a, b, and c corresponding to
the three stages, we can compute the average utility in two different ways:

– we can first combine the utilities of the first two stages into an average value
a ∗ b, and then combine this average with c, resulting in (a ∗ b) ∗ c;

– alternatively, we can first combine the utilities b and c into b ∗ c, and then
combine a with b ∗ c, resulting in a ∗ (b ∗ c).

The resulting three-stage average should not depend on the order in which we
combined the stages, so we should have (a ∗ b) ∗ c = a ∗ (b ∗ c); in mathematical
terms, the operation a ∗ b must be associative.

5) Finally, since utility is defined modulo scaling, it is reasonable to require that
the utility-averaging operation does not change with scaling:

– In the original scale, we combine a and b and get a ∗ b. In the new scale
corresponding to a factor k > 0, this combined value has the form k · (a ∗ b).

– After re-scaling, the original utilities get the new values a′ = k·a and b′ = k·b.
Averaging these two values leads to a′ ∗ b′ = (k · a) ∗ (k · b) in the new scale.

The resulting average should not depend on how we deduced it, i.e., we should
have (k · a) ∗ (k · b) = k · (a ∗ b) for all k, a and b.

What we plan to do. Let us show that the above reasonable requirements largely
explain the peak-end phenomenon.
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3 Main Result

Proposition 1. Let a ∗ b be a binary operation on the set of all non-negative
numbers which satisfies the following properties:

1) it is idempotent, i.e., a ∗ a = a for all a;
2) it is monotonic, i.e., a ≤ a′ and b ≤ b′ imply that a ∗ b ≤ a′ ∗ b′;
3) it is continuous as a function of a and b;
4) it is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c);
5) it is scale-invariant, i.e., (k · a) ∗ (k · b) = k · (a ∗ b) for all k, a and b.

Then, this operation coincides with one of the following four operations:

• a1 ∗ . . . ∗ an = min(a1, . . . , an);
• a1 ∗ . . . ∗ an = max(a1, . . . , an);
• a1 ∗ . . . ∗ an = a1;
• a1 ∗ . . . ∗ an = an.

Comment. Thus, every utility-averaging operation which satisfies the above rea-
sonable properties means that we select either the worst or the best or the first or
the last utility. This (almost) justifies the peak-end phenomenon, with the only
exception that in addition to peak and end, we also have the start a1∗. . .∗an = a1
as one of the options.

Proof.

1◦. For every a ≥ 1, let us denote a∗1 by φ(a). For a = 1, due to the idempotence,
φ(1) = 1 ∗ 1 = 1. Due to monotonicity, a ≤ a′ implies that φ(a) ≤ φ(a′), i.e.,
that the function φ(a) is (non-strictly) increasing.

2◦. Due to associativity, for every a, we have (a ∗ 1) ∗ 1 = a ∗ (1 ∗ 1). Due to
idempotence, 1∗1 = 1, so the above equality takes the form (a∗1)∗1 = a∗1, i.e.,
the form φ(φ(a)) = φ(a). Thus, for every value t from the range of the function
φ(a) for a ≥ 1, we have φ(t) = t.

3◦. Since the operation a ∗ b is continuous, the function φ(a) = a ∗ 1 is also

continuous. Thus, its range S
def
= φ([1,∞)) for a ∈ [1,∞) is a connected set,

i.e., an interval (finite or infinite). Since the function φ(a) is monotonic, and
φ(1) = 1, this interval must start with 1. So, we have three possible options:

• S = {1};
• S = [1, k] or S = [1, k) for some k ∈ (1,∞);
• S = [1,∞).

Let us consider these three options one by one.

3.1◦. In the first case, φ(a) = a ∗ 1 = 1 for all a. From scale invariance, we can

now conclude that for all a ≥ b, we have a ∗ b = b ·
(a
b
∗ 1

)
= b · 1 = b.

3.2◦. In the second case, every value t between 1 and k is a possible value of
φ(a), thus φ(t) = t ∗ 1 = t for all such values t. In particular, for every ε > 0, for
the value t = k − ε, we have φ(k − ε) = k − ε. Due to monotonicity, the value

14



φ(k) must be not smaller than all these values k − ε, hence not smaller than k.
On the other hand, all the values φ(a) are less than or equal than k, so we must
have φ(k) = k as well. Similarly, for values t ≥ k, due to monotonicity, we have
φ(t) ≥ k and since always φ(t) ≤ k, we conclude that φ(t) = k for all t ≥ k.
Now, due to associativity, we have

((k − ε)2 ∗ (k − ε)) ∗ 1 = (k − ε)2 ∗ ((k − ε) ∗ 1). (1)

Here, due to scale-invariance,

(k − ε)2 ∗ (k − ε) = (k − ε) · ((k − ε) ∗ 1) = (k − ε) · φ(k − ε) =

(k − ε) · (k − ε) = (k − ε)2, (2)

and therefore,

((k − ε)2 ∗ (k − ε)) ∗ 1 = (k − ε)2 ∗ 1 = φ((k − ε)2).

For k > 1, we have k2 > k and thus, for sufficiently small ε > 0, we have
(k − ε)2 > k. So, φ((k − ε)2) = k, i.e., the left-hand side of the equality (1) is
equal to k.

Let us now compute the right-hand side of the equality (1). Here, (k−ε)∗1 =
k − ε and thus, the right-hand side has the form (k − ε)2 ∗ (k − ε) which, as we
already know (Equation (2)), is equal to (k − ε)2. We already know that the
left-hand side is equal to k, and that (k− ε)2 > k. Thus, the equality (1) cannot
be satisfied. This proves that the second case is impossible.

3.3◦. In the third case, every value t ≥ 1 is a possible value of φ(a), thus

φ(t) = t ∗ 1 = t

for all values t ≥ 1. Thus, for all a ≥ b, we have a ∗ b = b ·
(a
b
∗ 1

)
= b · a

b
= a.

4◦. Due to Part 3 of this proof, we have one of the following two cases:

≥1: for all a ≥ b, we have a ∗ b = b;
≥2: for all a ≥ b, we have a ∗ b = a.

Similarly, by considering a ≤ b, we conclude that in this case, we also have two
possible cases:

≤1: for all a ≤ b, we have a ∗ b = b;
≤2: for all a ≤ b, we have a ∗ b = a.

By combining each of the ≥ cases with each of the ≤ cases, we get the following
four combinations:

≥1,≤1: in this case, a∗ b = b for all a and b, and therefore, a1 ∗ . . .∗an = an;
≥1,≤2: in this case, a ∗ b = min(a, b) for all a and b, and therefore,

a1 ∗ . . . ∗ an = min(a1, . . . , an);
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≥2,≤1: in this case, a ∗ b = max(a, b) for all a and b, and therefore,

a1 ∗ . . . ∗ an = max(a1, . . . , an);

≥2,≤2: in this case, a∗ b = a for all a and b, and therefore, a1 ∗ . . .∗an = a1.

The proposition is proven.

Case of negative utilities. The above formula shows how to combine positive
experiences. A similar result can be proven for situations in which we need
to combine unpleasant experiences, i.e., experience corresponding to negative
utilities; the proof of this result is similar to the proof of Proposition 1.

Remaining open problems. Following the psychological experiments, we only con-
sidered the case when all experiences are positive and the case when all experi-
ences are negative. What happens in the general case? If we impose an additional
requirement of shift-invariance (a+ u0) ∗ (b+ u0) = a ∗ b+ u0, then we can get
a result similar to Proposition 1 for this general case as well. But what if we do
not impose this additional requirement?

Are all five conditions in Proposition 1 necessary? Some are necessary:

1) a ∗ b = a+ b satisfies all the conditions except for idempotence;

4) a ∗ b = a+ b

2
satisfies all the conditions except for associativity;

5) the operation a ∗ b that returns the value from the interval
[min(a, b),max(a, b)] which is the closest to 1 satisfies all the conditions ex-
cept for scale invariance.

However, it is not clear whether monotonicity and continuity are needed to prove
our results.

Comment. In analyzing the need for these conditions, it may help to know that
the set {z : z ∗ 1 = z} is a semigroup: indeed, if z1 ∗ 1 = z1 and z2 ∗ 1 = z2, then
(z1·z2)∗(z1∗1) = (z1·z2)∗z1 = z1·(z2∗1) = z1·z2 and ((z1·z2)∗z1)∗1 = (z1·z2)∗1,
so associativity implies that (z1 · z2) ∗ 1 = z1 · z2.
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Abstract. In many practical situations, it is necessary to describe an
image in words. From the purely logical viewpoint, to describe the same
object, we can use concepts of different levels of abstraction: e.g., when
the image includes a dog, we can say that it is a dog, or that it is a
mammal, or that it is a German Shepherd. In such situations, humans
usually select a concept which, to them, in the most natural; this concept
is called the basic level concept. However, the notion of a basic level
concept is difficult to describe in precise terms; as a result, computer
systems for image analysis are not very good in selecting concepts of
basic level. At first glance, since the question is how to describe human
decisions, we should use notions from a (well-developed) decision theory –
such as the notion of utility. However, in practice, a well-founded utility-
based approach to selecting basic level concepts is not as efficient as
a purely heuristic “similarity” approach. In this paper, we explain this
seeming contradiction by showing that the similarity approach can be
actually explained in utility terms – if we use a more accurate description
of the utility of different alternatives.

1 Formulation of the Problem

What are basic level concepts and why their are important. With the
development of new algorithms and faster hardware, computer systems are get-
ting better and better in analyzing images. Computer-based systems are not
yet perfect, but in many cases, they can locate human beings in photos, select
photos in which a certain person of interest appears, and perform many other
practically important tasks.

In general, computer systems are getting better and better in performing
well-defined image understanding tasks. However, such systems are much less
efficient in more open-ended tasks, e.g., when they need to describe what exactly
is described by a photo.

For example, when we present, to a person, a photo of a dog and ask: “What
is it?”, most people will say “It is a dog”. This answer comes natural to us, but,
somewhat surprisingly, it is very difficult to teach this answer to a computer.
The problem is that from the purely logical viewpoint, the same photo can be
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characterized on a more abstract level (“an animal”, “a mammal”) or on a more
concrete level (“German shepherd”). In most situations, out of many possible
concepts characterizing a given object, concepts of different levels of generality,
humans select a concept of a certain intermediate level. Such preferred concepts
are known as basic level concepts.

We need to describe basic level concepts in precise terms. Detecting
basic level concepts is very difficult for computers. The main reason for this
difficulty is that computers are algorithmic machines. So, to teach computers to
recognize basic level concepts, we need to provide explain this notion in precise
terms – and we are still gaining this understanding.

Current attempts to describe basic level concepts in precise terms:
a brief description. When we see a picture, we make a decision which of the
concepts to select to describe this picture. In decision making theory, it is known
that a consistent decision making can be described by utility theory, in which to
each alternative A, we put into correspondence a number u(A) called its utility
in such a way that a utility of a situation in which we have alternatives Ai with
probabilities pi is equal to

∑
pi · u(Ai); see, e.g., [4, 5, 8, 10, 12].

Naturally, researchers tried to use utility theory to explain the notion of
basic level concepts; see, e.g., [3, 7, 14]. In this approach, researchers analyze
the effect of different selections on the person’s behavior, and come up with
the utility values that describes the resulting effects. The utility-based approach
describes the basic level concepts reasonably well, but not perfectly. Somewhat
surprisingly, a different approach – called similarity approach – seem to be more
adequate in describing basic level concepts. The idea behind this approach was
proposed in informal terms in [13] and has been described more formally in [11].
Its main idea is that in a hierarchy of concepts characterizing a given object, a
basic level concept is the one for which the degree of similarity between elements
is much higher than for the more abstract (more general) concepts and slightly
smaller than for the more concrete (more specific) concepts. For example, we
select a dog as a basic level concept because the degree of similarity between
different dogs is much larger than similarity between different mammals – but,
on the other hand, the degree of similarity between different German Shepherds
is not that much higher than the degree of similarity between dogs of various
breeds.

In our papers [1, 2], we transformed somewhat informal psychological ideas
into a precise algorithms and showed that the resulting algorithms are indeed
good in detecting basic level concepts.

Challenging question. From the pragmatic viewpoint, that we have an ap-
proach that works well is good news. However, from the methodological view-
point, the fact that a heuristic approach works better than a well-founded ap-
proach based on decision theory – which describes rational human behavior – is
a challenge.

What we do in this paper: main result. In this paper, we show – on the
qualitative level – that the problem disappears if we describe utility more ac-
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curately: under this more detailed description of utility, the decision-making
approach leads to the above-mentioned similarity approach.

What we do in this paper: auxiliary result. It is usually more or less
clear how to define degree of similarity – or, equivalent, degree of dissimilarity
(“distance” d(x, y)) between two objects. There are several possible approaches
to translate this distance between objects into distance between concepts (classes
of objects). We can use worst-case distance d(A,B) defined as the maximum of
all the values d(x, y) for all x ∈ A and y ∈ B. Alternatively, we can use average
distance as the arithmetic average of all the corresponding values d(x, y). In [1],
we compared these alternatives; it turns out that the average distance leads to
the most adequate description of the basic level concepts.

In this paper, we provide a (qualitative) explanation of this empirical fact as
well.

2 Analysis of the Problem and the Resulting Solution

What is the utility associated with concepts of different levels of gen-
erality. In the ideal world, when we make a decision in a certain situation, we
should take into account all the information about this situation, and we should
select the best decision based on this situation.

In practice, our ability to process information is limited. As a result, instead
of taking into account all possible information about the object, we use a word
(concept) to describe this notion, and then we make a decision based only on
this word: e.g., a tiger or a dog. Instead of taking into account all the details of
the fur and of the face, we decide to run away (if it is a tiger) or to wave in a
friendly manner (if it is a dog).

In other words, instead of making an optimal decision for each object, we use
the same decision based on an “average” object from the corresponding class.
Since we make a decision without using all the information, based only on an
approximate information, we thus lose some utility; see, e.g., [9] for a precise
description of this loss.

From this viewpoint, the smaller the classes, the less utility we lose. This is
what was used in the previous utility-based approaches to selecting basic level
concepts.

However, if the classes are too small, we need to store and process too much
information – and the need to waste resources (e.g., time) to process all this
additional information also decreases utility. For example, instead of coming up
with strategies corresponding to a few basic animals, we can develop separate
strategies for short tigers, medium size tigers, larger tigers, etc. – but this would
take more processing time and use memory resources which may be more useful
for other tasks. While this is a concern, we should remember that we have billions
of neurons, enough to store and process huge amounts of information, so this
concern is rather secondary in comparison with a different between being eaten
alive (if it is a tiger) or not (if it is a dog).
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How to transform the above informal description of utility into precise
formulas and how this leads to the desired explanations. The main reason
for disutility (loss of utility) is that in a situation when we actually have an x, we
use an approach which is optimal for a similar (but slightly different) object y.
For example, instead of making a decision based on observing a very specific dog
x, we ignore all the specifics of this dog, and we make a decision based only one
the fact that x is a dog, i.e., in effect, we make a decision based on a “typical”
dog y.

The larger the distance d(x, y) between the objects x and y, the larger this
disutility U . Intuitively, different objects within the corresponding class are sim-
ilar to each other – otherwise they would not be classified into the same class.
Thus, the distance d(x, y) between objects from the same class are small. We can
therefore expand the dependence of U on d(x, y) in Taylor series and keep only
the first few terms in this dependence. In general, U = a0 + a1 · d+ a2 · d2 + . . .
When the distance is 0, i.e., when x = y, there is no disutility, so U = 0. Thus,
a0 = 0 and the first non-zero term in the Taylor expansion is U ≈ a1 · d(x, y).

Once we act based on the class label (“concept”), we only know that an
object belongs to the class, we do not know the exact object within the class.
We may have different objects from this class with different probabilities. By
the above property of utility, the resulting disutility of selecting a class is equal
to the average value of the disutility – and is, thus proportional to the average
distance d(x, y) between objects from a given class. This explains why average
distance works better then the worst-case distance.

When we go from a more abstract concept (i.e., from a larger class) to a more
specific concept (i.e., to a smaller class of objects), the average distance decreases
– and thus, the main part Um of disutility decreases: U ′

m < Um. However, as we
have mentioned, in addition to this main part of disutility Um, there is also an
additional secondary (smaller) part of utility Us ≪ Um, which increases when
we go to a more specific concept: U ′

s > Us.

On the qualitative level, this means the following: if the less general level has
a much smaller degree of similarity (i.e., a drastically smaller average distance
between the objects on this level), then selecting a concept on this less general
level drastically decreases the disutility U ′

m ≪ Um, and this decrease Um−U ′
m ≫

0 overwhelms the (inevitable) increase U ′
s−Us in the secondary part of disutility,

so that U ′ = Um + U ′
s < Um + Us = U . On the other hand, if the decrease in

degree of similarity is small (i.e., U ′
m ≈ Um), the increase in the secondary part

of disutility U ′
s − Us can over-stage the small decrease U ′

m − Um.

A basic level concept is a concept for which disutility U ′ is smaller than for a
more general concept U and than for a more specific concept U ′′. In view of the
above, this means that there should be a drastic difference between the degree
of similarity U ′

m at this level and the degree of similarity Um at the more general
level – otherwise, on the current level, we would not have smaller disutility.
Similarly, there should be a small difference between the degree of similarity
at the current level U ′

m and the degree of similarity U ′′
m at the more specific
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level – otherwise, on the current level, we would not have smaller disutility. This
explains the similarity approach in utility terms.
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Abstract. In computable mathematics, there are known definitions of
computable numbers, computable metric spaces, computable compact
sets, and computable functions. A traditional definition of a computable
function, however, covers only continuous functions. In many applica-
tions (e.g., in phase transitions), physical phenomena are described by
discontinuous or multi-valued functions (a.k.a. constraints). In this pa-
per, we provide a physics-motivated definition of computable discon-
tinuous and multi-valued functions, and we analyze properties of this
definition.

1 Formulation of the Problem

Need to define computable discontinuous functions. One of the main objectives
of physics it to predict physical phenomena, i.e., use the observations to compute
the predicted values of the corresponding physical quantities. Many physical phe-
nomena such as phase transitions and quantum transitions include discontinuous
dependencies y = f(x) (“jumps”); see, e.g., [2].

In other physical situations, for some values x, we may have several possible
values y. From the purely mathematical viewpoint, this means that the relation
between x and y is no longer a function, it is a relation of a constraint R ⊆ X×Y ;
following the terminology widely used in applications, we will also call them
multi-valued functions.

To analyze which models of discontinuous or multi-valued behavior are com-
putable and which are not, we need to have a precise definition of what is means
for a discontinuous and/or multi-valued function to be computable. Alas, the
current definitions of computable functions are mostly limited to continuous
case.

What we plan to do. Our main goal is to define what it means for a discontinuous
and/or multi-valued function to be computable.

For that purpose, we first explain the current definitions of computable num-
bers, objects, and functions. Then, we use physical motivations to come up with a
new definition of computable discontinuous and multi-valued functions. Finally,
we provide a few preliminary results about the new definition.
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Computable numbers: reminder. Intuitively, a real number is computable if we
can compute it with any desired accuracy. In more precise terms, a real number
x is called computable if there exists an algorithm that, given a natural number
n, returns a rational number rn which is 2−n-close to x: |x− rn| ≤ 2−n; [1, 3].

Computable metric spaces: motivation. A similar notion of computable elements
can be defined for general metric spaces. In general, a element x is computable
if there is an algorithm which generates better and better approximation to x.
At each moment of time, we only have a finite amount of information about x;
based on this information, we produce an approximation corresponding to this
information. Any information can be represented, in the computer, as a sequence
of 0s and 1s; any such sequence can be, in turn, interpreted as a binary integer n.
Let x̃n denote an approximation corresponding to an integer n. Then, it makes
sense to require that in a computable metric space, there is a sequence of such
approximating elements {x̃n}.

Computable means, in particular, that the distance dX(x̃n, x̃m) between such
elements should be computable. Thus, we arrive at the following definition.

Computable metric spaces: definition. By a computable metric space, we mean a
metric space X with a sequence {x̃n} of elements such that there is an algorithm
that, given two natural numbers m and n, returns the distance dX(x̃m, x̃n) (i.e.,
for every natural number k, returns a rational number rk which is 2−k-close to
dX(x̃m, x̃n)).

We say that an element x of a computable metric space X is computable if
there exists an algorithm that, given a natural number n, returns an integer kn
for which x̃kn is 2−n-close to x: dX(x̃kn , x) ≤ 2−n.

Computable functions: definition. A function f : X → Y from a computable
metric space X to a computable metric space Y is called computable if there
exists an algorithm which uses x as an input and computes, for each integer
n, a 2−n-approximation yk to f(x). By “uses x as an input”, we mean that to
compute yk, this algorithm can request, for each integerm, a 2−m-approximation
xℓ to x (and to use the index ℓ of this 2−m-approximation in computing yk).

Computable functions are continuous. The problem with the above definition is
that all the functions computable according to this definition are continuous;
see, e.g., [1, 3]. Thus, we cannot use this definition to check how well we can
compute a discontinuous function.

This continuity is easy to understand. For example, if we have a function
f(x) form real numbers to real numbers which is equal to 0 for x ≤ 0 an to 1 for
x > 0, then, if we could compute f(x) for a given x with accuracy 2−2, then we
would be able, given a computable real number x, to tell whether this number
is positive or not, and this is known to be algorithmically impossible.

Computable compact set. In analyzing computability, it is often useful to start
with pre-compactmetric spaces, i.e., metric spacesX for which, for every positive
real number ε > 0, there exists a finite ε-net, i.e., a finite list of elements L such
that every element x ∈ X is ε-close to one of the elements from this list. In a
Euclidean space, every bounded set is compact. A pre-compact set is compact if
every converging sequence has a limit.
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A natural idea is to call a compact metric space X computable compact if X
is a computable metric space and there is an (additional) algorithm that, given
an integer n, returns a finite list Ln of elements of X which is a 2−n-net for X.

2 Towards A New Definition of Computable
Discontinuous and Multi-Valued Functions

Simplifying comment. Before we start analyzing the problem, let us make one
important comment. Functions can not only be discontinuous or multi-valued,
they can also be undefined for some inputs x. However, in contrast to disconti-
nuity and multiplicity of values, this is not a serious problem: if a relation is not
everywhere defined, we can make it everywhere defined if we consider, instead of
the original set X, a projection of R on this set. For example, a function

√
x is

not everywhere defined on the real line, but it is everywhere defined on the set
of all non-negative real numbers. Thus, without losing generality, we can assume
that our relation is everywhere defined.

Definition 1. A relation R ⊆ X × Y is called everywhere defined if for every
x ∈ X, there exists a y ∈ Y for which (x, y) ∈ R.

Analysis of the problem. From the physical viewpoint, what does it mean that
the dependence between x and y – as described by a given discontinuous and/or
multi-valued function – is computable?

In the ideal case, when we have a continuous single-valued dependence, the
value x uniquely determines the value y = f(x). In this case, once we know x,
we want to compute f(x) with a given accuracy. This is exactly the idea behind
the usual definition of a computable function.

For a multi-valued function, for the same input x, we may get several different
values y. In this case, it is desirable to compute the set of all possible value y
corresponding to a given x. When we limit ourselves to multi-valued mappings
from a compact set X to a compact set Y , the set of x-possible values of y is
pre-compact, and thus, with any given accuracy, can be described by a finite list
L of possible values. In other words:

– first, the list L should represent all possible values, i.e., if y is a possible
value of f(x) for a given x, then y should be close to one of the values from
the finite list L;

– second, all the values from the list L must be possible values; in other words,
for every value from the list, there must exist a close possible value of f(x).

Discontinuity provides an additional complexity which can be illustrated on
the example of the above discontinuous function f(x) = 0 for x ≤ 0 and f(x) = 1
for x > 0. In particular, for x = 0, we get f(x) = f(0) = 0. However, at each
stage of the computation, we only know an approximate value of x. So, when the
actual value of the input is x = 0, we will never find out whether x is non-positive
(in which case f(x) = 0) or positive (in which case f(x) = 1). Thus, no matter
how accurately we measure x, the only information about y that we can conclude
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is y is either equal to 0 or equal to 1. In general, we need to take into account
not only the values f(x) for a given x, but also the values f(x′) corresponding
to values x′ which are close to x. In view of this, the above properties of the list
L must be appropriately modified:

– first, the list L should represent all possible values, i.e., if y is a possible
value of f(x′) for some x′ which is close to the given x, then y should be
close to one of the values from the finite list L;

– second, all the values from the list L must be possible values; in other words,
for every value from the list, there must exist a close value y which is a
possible value of f(x′) for some x′ which is close to x.

In general, the closeness does does not have to be the same in both cases. Thus,
we arrive at the following definition.

Definition 2. Let X and Y be computable compact sets with metrics dX and dY .
An everywhere defined relation R ⊆ X × Y is called computable if there exists
an algorithm that, given a computable element x ∈ X and computable positive
numbers 0 < ε < ε′ and 0 < δ, produces a finite list {y1, . . . , ym} ⊆ Y that
satisfies the following two properties:

(1) if (x′, y) ∈ R for some x′ for which dX(x′, x) ≤ ε, then there exists an i for
which dY (y, yi) ≤ δ;

(2) for each element yi from this list, there exist values x′ and y for which
dX(x, x′) ≤ ε′, dY (yi, y) ≤ δ, and (x′, y) ∈ R.

3 Properties of the New Definition

Main result. If X and Y are metric spaces with metrics dX and dY , then on their
Cartesian product X × Y (i.e., the set of all pairs (x, y), x ∈ X and y ∈ Y ) we

can define a metric dX×Y ((x, y), (x
′, y′))

def
= max(dX(x, x′), dY (y, y

′)). One can
check that if X and Y are both compact sets, then the product X × Y is also a
compact set: to get an ε-net for X × Y , it is sufficient to take ε-nets LX for X
and LY for Y ; one can then easily check that the set LX×Ly of all possible pairs
is an ε-net for the Cartesian product X × Y . This construction is computable,
so we conclude that the Cartesian product of computable compact sets is also a
computable compact set.

Our first – somewhat surprising – result is that this new definition is equiv-
alent to simply requiring that the set R (describing the graph of the relation) is
a computable compact set:

Proposition 1. Let X and Y be computable compact sets. A relation R ⊆ X×Y
is computable if and only if the set R is a computable compact set.

Proof. ⇐ Let us first prove that if R is a computable compact set, then the rela-
tion R is computable in the sense of Definition 2. Indeed, let x be a computable
element of X, and let the computable positive values ε < ε′ be given. Then, ac-
cording to a known result from [1], we can find a computable value ε0 ∈ (ε, ε′) for
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which the set S
def
= {(x′, y) ∈ R : dX(x, x′) ≤ ε0} is also a computable compact

set. Thus, for a given computable number δ > 0, there exists a finite δ-net for
this set S. Let us denote the elements of this δ-net L by (x1, y1), . . . , (xm, ym).
Let us show that, as the desired finite list, we can now take the list {y1, . . . , ym}.
Let us prove that this list satisfies both desired properties.

(1) If (x′, y) ∈ R for some x′ for which dX(x, x′) ≤ ε, then, due to ε < ε0,
we have dX(x, x′) < ε0. Thus, (x

′, y) ∈ S. Since L = {(x1, y1), . . . , (xm, ym)}
is a δ-net for the set S, we conclude that there exists an index i for
which dX×Y ((x

′, y), (xi, yi)) ≤ δ. By definition of dX×Y , this means that
max(dX(x′, xi), dY (y, yi)) ≤ δ and therefore, dY (y, yi) ≤ δ. The first property
from Definition 1 is proven.

(2) Let us now prove the second property. Let yi be one of the selected
elements. By our construction, the corresponding pair (xi, yi) belongs to δ-net for
the set S. In particular, this means that (xi, yi) ∈ S. This means that (xi, yi) ∈ R
and that dX(x, xi) ≤ ε0. Since ε0 < ε′, we conclude that dX(x, xi) ≤ ε′. Thus, for
each i, there exists x′ = xi and y = yi for which dX(x, x′) ≤ ε′, dY (yi, y) = 0 ≤ δ,
and (x′, y) ∈ R. The second property is proven as well.
⇒ Let us now prove that if R is a computable relation in the sense of Definition
2, then R is computable compact set. For that, we must show how, given a
computable positive real number α > 0, we can generate an α-net for this set R.
First, we use that fact that X is a computable compact, and generate an (α/2)-
net {x1, . . . , xk}. For each point xi, we then apply Definition 2 for δ = ε = α/2
and ε′ = α and generate the corresponding list {yi1, . . . , yimi}. Let us show that
the pairs (xi, yij) form an α-net for the set R.

Indeed, by Definition 2, for each i and j, there exist values x′ and y for
which dX(xi, x

′) ≤ ε′ = α, dY (yij , y) ≤ δ = α/2, and (x′, y) ∈ R. Thus, the pair
(xi, yij) is α-close to an element (x′, y) ∈ R.

Vice versa, let (x, y) ∈ R. Since xi form an (α/2)-net, there exists an i
for which d(x, xi) ≤ α/2 = ε. From Property (1) of Definition 2, we can
now conclude that there exists a j for which dY (y, yij) ≤ δ = α. Thus,
dX×Y ((x, y), (xi, yij)) = max(dX(x, xi), dY (y, yij)) ≤ max(α/2, α) = α. The
proposition is proven.

Inverse functions: a corollary. If the range of R is the whole set Y , then, from
Proposition 1, it follows that a multi-valued function (relation) R is computable
if and only if its inverse R−1 = {(x, y) : (y, x) ∈ R} is computable.
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Abstract. A significant fraction of mobile and infrastructure computing
is implemented in garbage collected (GC’d) programming languages. For
example, Java is the primary programming language for the more than
109 delay-intolerant and energy limited devices running Android. Java
is also employed at online data centers, which are also delay intolerant
and consume 10% of US electrical capacity. Garbage collection requires
a periodic time and energy-intensive operation that can contribute to
program execution delays. // // Techniques for reducing mutator (appli-
cation program) delays and minimizing heap size for automatic memory
management (AMM) have been investigated independently. However,
there is a paucity of research related to the composition of these con-
straints, which is the focus of our work. // // We examine AMM policies
related to heap size management and GC scheduling. Due to its market
relevance the the availability of source code, our research target is An-
droid’s Dalvik (J)VM. Our instrumentation of recent Android releases
indicates that it is not unusual for 20% of CPU time to be spent garbage
collecting, and for mutator threads to be blocked during a significant
portion of this time. Furthermore, prolonged low-priority garbage col-
lection operations can trigger CPU clock frequency increases, and may
result in a disportionate increase in energy consumption. We have not
yet examined whether these techniques are suitable for reducing energy
consumption by infrastructure computing.
Heap footprint size is inversely related to the frequency of memory ex-
haustion and GC. E.g., a small heap will be exhausted quite rapidly (and
frequently trigger low-yield GC). Android’s Dalvik automatic memory
management policies for heap growth and garbage collection schedul-
ing utilize constant factors tuned to minimize memory footprint. These
policies result in only marginally acceptable response times and garbage
collection significantly contributes to apps’ CPU time and therefore en-
ergy consumption. Initial sensitivity studies indicate that the contribu-
tion of GC towards an Android app’s total CPU time can be significantly
reduced by permitting a moderate amount of heap growth.
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Dalvik’s AMM policy allows for a moderate amount of heap growth that
is a constant fraction of free space at the time a GC completes. Should
a heap be unable to satisfy a thread’s memory allocation request, a GC
is initiated and the thread’s execution is blocked until its request can
be satisfied. Additional heap growth is only permitted when needed to
satisfy such threads’ memory allocation requests after the GC completes.
Our instrumentation of Dalvik indicates that the heap growth permitted
by Dalvik’s policies is insufficient to avoid frequent low-yield GCs. These
frequent GC operations delay program execution for, increase CPU time
consumed by, and trigger clock frequency increases for high value apps
such as Google Maps.
Our alternative policies relax constraints on heap growth when mem-
ory exhaustion occurs frequently and dynamically determine when back-
ground garbage collection should be commenced based upon the amount
of free heap space and the rate of program memory allocation.
The resulting system that has no significant delays due to garbage col-
lection and only a moderate (and acceptable) increase in heap size.
Current efforts are focusing on

– (Determining how to) Characterize energy consumption caused by
GC.

– Developing an experimental methodology and infrastructure for col-
lecting and analyzing memory subsystem performance data from a
large number of devices.

– Extending instrumentation to identify apps with bursty allocation
patterns and developing policies that reduce memory size by schedul-
ing GC after such bursts.

– Examining approaches to enable a frequency governor to identify GC
threads and GC urgency when characterizing CPU load and setting
CPU frequency. . . .

Keywords: Garbage Collection, background, foreground, automatic mem-
ory management, power limited, delay intolerant, memory exhaustion
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Abstract. Runtime support for automatic memory management (AMM)
requires automatic identification of recyclable memory. This process is
commonly called garbage collection and abbreviated GC. This identi-
fication process is commonly implemented using a “tracing” garbage
collector that implements a transitive search of reachable memory ob-
jects. AMM can interfere with program responsiveness: Should a runtime
heap become exhausted, program execution may need to be blocked until
garbage collection has freed an adequate amount of memory to permit
its continuance.

In order to minimize GC delays, it is now common to proactively schedule
garbage collection when the CPU would otherwise be idle. The frequency
that GC is required is strongly dependent on the amount of memory
available for dynamic allocation: A heap with a smaller memory “foot-
print” will require more frequent GC. Since most modern processors can
be programmed to enter a low-power idle state when the ready queue is
empty and frequency governors typically increase clock frequency when
CPU utilization is high, small heap footprints or paranoid GC invoca-
tion policies can result in significant increases in energy consumption.
Our research examines approaches for dynamically determining (1) the
amount of memory that should be available for dynamic allocation (heap
footprint size) and (2) times when the garbage collector’s background ex-
ecution should be invoked.

Factors that affect these decisions can include:

• The expected amount of time before the heap will be exhausted.

• The expected amount of time required to execute the garbage col-
lector

• The expected fraction of idle CPU cycles available to execute the
garbage collector without delaying the user program (commonly
called the “mutator”)

• The expected rate of heap exhaustion
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2 Predicting memory exhaustion using machine learning

Empirical measurement of the mobile systems we are targeting indicate
that background execution of the garbage collector typically completes
within 200ms, and that GC CPU time allocation is below 5% if executed
no more frequently than once every 2s.

We have developed policies that permit heap footprint growth to prevent
GC from occurring more frequently than once every 2s and have found
that the resulting increase of heap size (by as much as three times) never
exceeded 16MB, and constituted a small fraction of total system RAM
and therefore was acceptable. Our focus has been on the complementary
problem of predicting the time of heap exhaustion so that GC can be
initiated just-in-time to complete prior to heap exhaustion.

We are exploring both human and machine-designed heuristics. This pa-
per describes a machine learning (ML) approach being evaluated for
machine-designed heuristics. As is common for ML, humans still play a
role in choosing the family of ML classifier and in designing the attributes
available to the ML system. Operational constraints have driven our ini-
tial selection of candidate classifiers and features. The remainder of this
abstract describes these constraints, the candidate classifiers and features
being examined, experimental approach, and early experimental results.
An online classification algorithm responsible for invoking GC will be
integrated into the runtime system and must consume little CPU time.
This online decision process is distinct from offline training, for which
prolonged computation is acceptable.

Offline training uses data collected from a mobile device instrumented
to log the sequence of significant memory allocation events. In order to
understand the behavior that precedes memory exhaustion, background
garbage collection is disabled, and instead a foreground GC is invoked
when the heap is unable to satisfy a memory request. If offline analy-
sis indicates superior characteristics to human-designed, we will pursue
embedding the classifier into an operational system.

Our initial candidate classifiers are decision-trees generated by Ross
Quinlan’s C 4.5 algorithm. Since these decision trees do not perform
arithmetic computations, we have found it beneficial to synthesize fea-
tures that directly correspond to memory allocation rates, availability,
and their ratios. Their ratio provide a first-order approximation to the
expected time to memory exhaustion.

Keywords: Garbage collection, background, foreground, machine learn-
ing, C4.5, automatic memory management, power-limited, delay-intolerant,
memory exhaustion
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Abstract. Caching of computed or fetched values for potential future
reuse is a common programming idiom. Ideally, management policies
should be driven by the availability of storage resources and expected
future program behavior. A cache’s retention policy can affect mem-
ory footprint size, program responsiveness, energy consumption, and in-
put/output operations.

Ideally retention policies will be sensitive to the availability of (mem-
ory) storage resources and (predicted) future reference sequences. Such
policies would require cooperative interaction among programs and the
memory allocation (and reclamation) system. This cooperation is im-
peded by traditional APIs for memory allocation that do not expose
resource availability.

Weak references are a language construct for garbage collected systems
intended to permit programs to inform the memory management sys-
tem of objects whose eviction can be tolerated. A weak reference does
not prevent an object from being evicted by the garbage collector. Weak
references to recycled objects are automatically cleared, and interfaces
are provided that inform programs when a weakly referenced object is
evicted.

Weak references are a mature linguistic construct. Java, Haskell, SML,
Python, and C# implement weak references with semantics intended
to permit this cooperation between memory management systems and
programs that can tolerate the eviction of referenced reachable objects.
Recently, the term weak reference has been overloaded by the designers
of the version of Objective C used to implement apps for Apple IOS
devices in a manner that enables its reference-count garbage collector
to break cycles and therefore evict unreachable objects. This alternative
implementation is incompatible with the autonomic cache designs we are
advocating.

While the linguistic semantics for weak references are mature, there is a
paucity of research examining retention strategies that are sensitive to
program behavior. A typical policy will clear all weak references upon
heap exhaustion. Our objective is to examine whether an object’s future
value can be effectively prioritized by the memory management system
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2 Prioritizing Weak Reference Garbage Collection to Facilitate Object Caching

and how such prioritization might be used to guide retention policies for
weakly-referenced objects. Potential value attributes include (1) proba-
bility of future access, (2) cost of object reconstruction (if needed), and
(3) the amount of memory that will be reclaimed should the object be
recycled.

Like trace-driven memory cache analysis techniques, our research will col-
lect reference histories to weakly referenced objects on a system modified
to not recycle weak references. Defensive programming within common
apps may distort these results. It would be useful to team up with app
developers who could disable the defensive components in versions used
for this evaluation.

The replacement cost for an evicted object include interface delays in-
curred due to computation or network transfers and energy consump-
tion by the CPU and network subsystems. We are examining whether
instrumentation of an object’s constructor can yield data useful to guide
retention policies. An alternative approach would be to provide an API
that permits programs to specify metrics relevant for predicting replace-
ment cost.

Finally, we are also examining whether weak referents should be evicted
on-demand, or instead proactively prior to heap exhaustion. Eviction
decisions require computation, and eviction protocols for weakly refer-
enced objects may involve the execution of finalizers and notification of
apps that implement listeners for such events. Since proactive evictions
occur prior to heap exhaustion, these computations can avoid delaying
the execution of mutator threads.

Keywords: Weak References, Garbage Collection, Cache Eviction
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Abstract. The proposed research applies a “thematic relevance of emo-
tions” framework to examine public reactions to presidential policy ap-
peals. To date, no research has explored whether the relevance of emotive
stimuli utilized by presidents in their public messages produces differen-
tial effects on public opinion. We investigate whether the thematic rel-
evance of emotive stimuli embedded in presidential speeches influences
people’s risk perceptions and policy support in the context of military
interventions in civil conflict. This study applies the “social risk amplifi-
cation” framework to further scholarly understanding of public reactions
to presidential policy appeals. We investigate whether and to what ex-
tent the thematic relevance of emotive stimuli embedded in presidential
speeches influences people’s risk perceptions and preferences regarding
military interventions in civil conflict. In our initial pilot study, we find
that while the induction of anger via thematically relevant emotive trig-
gers did not lead to lower risk perceptions, it did lead to higher levels of
support regarding military action. By comparison, we find that the effects
of anger on policy choice observed in the thematically irrelevant emotive
trigger condition are not significantly different from the emotion-neutral
control condition. Moving forward, we plan to conduct a survey experi-
ment using a nationally representative random sample. Our study offers
a new contribution to the literature on risk perceptions, risk communica-
tion, public support for military interventions, and executive power and
accountability in the public presidency.

1 Introduction

In recent years, a growing body of research has set out to examine the role
that emotions play in shaping political attitudes and behavior (e.g., [2, 12]).
Therein, several studies have begun exploring the distinct effects of different
emotions on people’s risk perceptions and political judgments regarding various
issues, events, and choices (see, for example, [7, 11]). Overall, this line of research
has found that anger is likely to increase one’s propensity to favor retaliatory,
risky, and aggressive policy actions compared to other emotions such as fear and
sadness.

On par with such work, research on political discourse and communication
has shown that emotion-laden appeals are selectively deployed by political lead-
ers in order to (1) reboost their public approval ratings while suppressing criti-
cism and dissent, (2) justify and garner support for their policy agenda (including
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military intervention policies), and (3) divert the attention of the public during
times of domestic turmoil (see, for example, [3]). Within the American context,
presidents often resort to emotive appeals in wielding the bully pulpit with the
expectation that it may help rally public support behind their political and pol-
icy agendas. For example, a president might seek empathy from listeners by
describing how civilians in a foreign country may be suffering at the hands of an
oppressive, violent regime and asking Americans to support a plan for military
action. To what extent might these emotive appeals influence the public mood
and lend credence to a president’s policy preferences, both with respect to a
particular policy (e.g., military intervention in civil conflict) and a president’s
broader policy agenda (e.g., attempting to take advantage of such emotion-driven
public rallies to seek out other foreign and domestic policy objectives)?

Despite heightened scholarly interest concerning emotion-laden appeals and
public reactions, one major issue that merits further investigation is the poten-
tial link between the antecedent conditions that trigger a particular emotion
and the effects that such emotion has on one’s decision making (see [13]). Is it
of importance whether the specificcause of a certain emotional state is themati-
cally linked to the decision task at hand? For instance, does angerregardless of
its sourcetend to lower people’s perceptions of risk and increase support for an
aggressive foreign policy option or do the thematic underpinnings of anger (i.e.,
the specific contents that trigger such emotion, such as an emotional story em-
bedded in a presidential speech concerning a civil conflict abroad) matter vis--vis
the policy choice? To address these questions, this study examines whether and
to what extent the thematic relevance of emotive stimuli embedded in presiden-
tial speeches influences people’s risk perceptions and support regarding military
interventions in civil conflict. Therein, we consider two alternative theoretical
perspectives: (1) the functional autonomy of emotions versus (2) the thematic
relevance of emotions.

Applying the former perspective, one may argue that the effects of emotions
are functionally autonomous from their sources such that a particular emotional
state (such as being angry) will have a uniform effect on one’s decision making
irrespective of the thematic content of the emotive trigger as its source (e.g., [4,
18]). According to this view, appraisal tendencies generated by specific emotions
can persist and spill over to influence one’s political judgment on a given issue
even when the target of judgment is unrelated to the emotion-eliciting stimulus
([4, 8]).

Alternatively, it is also plausible to argue that the effects of a certain emo-
tional state on one’s decision making is conditional on whether the specific source
of that emotional state is thematically related to the policy issue at hand. [18]
suggest that although people have a tendency to attribute their affective states
to the current object of attention (even when the actual source of their feelings
is completely unrelated to that object), such misattributions typically disappear
when people become aware of the true source of their affective states (see also
[10]). Furthermore, [15] point out that intense emotions are likely to be partic-
ularly resistant to misattribution since their sources tend to be highly salient.
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Accordingly, the extent to which an emotional state influences subsequent po-
litical judgments and assessments of risk may be contingent on whether the
individual perceives an external stimulus as connected to and/or responsible for
such emotional state ([10, 14]). Within such context, an individual may consider
a given emotion to be an irrelevant source of information if the decision making
domain under evaluation is unrelated to the emotional state.

Of these two contending theoretical perspectives, we expect that the the-
matic relevance of emotions (rather than the functional autonomy of emotions)
is more likely to be the primary underlying mechanism regarding the effects that
emotions have on public reactions to presidential messages. Specifically, we posit
that because an emotive trigger is embedded in a given cognitive context, the
relevance of that context to a policy issue under consideration is likely to accen-
tuate (or diminish) the impact of the induced emotional state on an individual’s
risk perceptions and decision making.

In the context of military interventions, if the source of a certain emotional
state is also thematically relevant to the issue (such as getting angry after ex-
posure to an emotional story embedded in a presidential speech addressing a
civil conflict abroad), we believe that the salience of such source is likely to
amplify the impact of the elicited emotion on people’s risk perceptions and pol-
icy preferences. By comparison, if the source of a certain emotional state is not
thematically relevant to the issue (such as getting angry after exposure to a
presidential speech addressing an incident involving crime in U.S. cities), the
disconnect between the source of the emotional state (crime in U.S. cities) and
the policy issue to be considered (military intervention in civil conflict abroad)
may subdue the impact of the elicited emotion on people’s policy preferences.
As such, our arguments regarding the effects of thematic relevance of emotions
on reactions to civil conflict parallel the “social amplification of risk” frame-
work, which suggests that an adverse event interacts with various psychological,
social, institutional, and cultural processes that may subsequently amplify (or
attenuate) people’s responses to the event (see [1, 9, 22]). Consequently, such
interaction triggers risk-related behavior.

2 Theoretical Framework and Hypotheses

In this study, our focus is on examining the effects of anger induced by themat-
ically relevant and irrelevant emotive presidential appeals on people’s risk per-
ceptions and policy preferences regarding military intervention in civil conflict.
Therein, we consider two alternative theoretical perspectives: (1) the functional
autonomy of emotions versus (2) the thematic relevance of emotions.

Applying the former perspective, one may argue that the effects of emotions
are functionally autonomous from their sources such that a particular emotional
state (such as being angry) will have a uniform effect on one’s decision making
irrespective of the thematic content of the emotive trigger as its source (e.g., [4,
5, 11, 18, 17]). According to this view, appraisal tendencies generated by specific
emotions can persist and spill over to influence one’s political judgment on a
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given issue even when the target of judgment is unrelated to the emotion-eliciting
stimulus ([4, 5, 8]).

Alternatively, it is also plausible to argue that the effects of a certain emo-
tional state on one’s decision making is conditional on whether the specific source
of that emotional state is thematically related to the policy issue at hand. [18, 17]
suggest that although people have a tendency to attribute their affective states
to the current object of attention (even when the actual source of their feelings
is completely unrelated to that object), such misattributions typically disap-
pear when people become aware of the true source of their affective states (see
also [10, 19, 20]). Furthermore, [15] point out that intense emotions are likely to
be particularly resistant to misattribution since their sources tend to be highly
salient. Accordingly, the extent to which an emotional state influences subse-
quent political judgments and assessments of risk may be contingent on whether
the individual perceives an external stimulus as connected to and/or responsi-
ble for such emotional state [6, 10, 14]. Within such context, an individual may
consider a given emotion to be an irrelevant source of information if the decision
making domain under evaluation is unrelated to the emotional state.

These two alternative theoretical perspectives concerning the effects of the-
matically relevant, irrelevant, and neutral emotive triggers may be expressed
as follows (where “E” denotes emotive trigger, “R” denotes thematic relevance,
“IR” denotes thematic irrelevance, and “C” denotes control):

1) [ER ≈ EIR] ̸= C (functional autonomy of emotions)
2) ER ̸= [EIR ≈ C] (thematic relevance of emotions)

Of these two contending theoretical perspectives, we expect that the the-
matic relevance of emotions (rather than the functional autonomy of emotions)
is more likely to be the primary underlying mechanism regarding the effects that
emotions have on public reactions to presidential messages. Specifically, we posit
that because an emotive trigger is embedded in a given cognitive context, the
relevance of that context to a policy issue under consideration is likely to accen-
tuate (or diminish) the impact of the induced emotional state on an individual’s
risk perceptions and decision making.

In the context of military interventions, if the source of a certain emotional
state is also thematically relevant to the issue (such as getting angry after ex-
posure to an emotional story embedded in a presidential speech addressing a
civil conflict abroad), we believe that the salience of such source is likely to
amplify the impact of the elicited emotion on people’s risk perceptions and pol-
icy preferences. By comparison, if the source of a certain emotional state is not
thematically relevant to the issue (such as getting angry after exposure to a
presidential speech addressing an incident involving crime in U.S. cities), the
disconnect between the source of the emotional state (crime in U.S. cities) and
the policy issue to be considered (military intervention in civil conflict abroad)
may subdue the impact of the elicited emotion on people’s policy preferences. As
such, our arguments regarding the effects of thematic relevance of emotions on
reactions to civil conflict parallel the “social amplification of risk” framework,
which suggests that an adverse event interacts with various psychological, social,
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institutional, and cultural processes that may subsequently amplify (or attenu-
ate) people’s responses to the event (see [1, 9, 22]). As a result of such interaction,
one may expect a higher tendency to engage in risk-related behavior and support
for forceful policy options to deal with an adverse event (particularly if anger
is the dominant emotion aroused in response). Accordingly, we hypothesize as
follows:

Hypothesis 1: Emotive presidential appeals for taking military action that
include thematically relevant triggers of anger are likely to prompt lower
risk perceptions among individuals (i.e., as compared to presidential appeals
that include thematically irrelevant triggers of anger or appeals that do not
include any emotive triggers).

Hypothesis 2: Emotive presidential appeals for taking military action that
include thematically relevant triggers of anger are likely to prompt higher
support among individuals (i.e., as compared to presidential appeals that in-
clude thematically irrelevant triggers of anger or appeals that do not include
any emotive triggers).

3 Experimental Design

To test our hypotheses, we conducted an experiment with a total of two-hundred-
twenty-one undergraduate students. Our experiment involves a between-groups
factorial design consisting of three conditions: (1) thematically relevant emotive
trigger condition, (2) thematically irrelevant emotive trigger condition, and (3)
emotion-neutral control condition. We randomly assigned the participants to the
experimental conditions.

For the manipulation of experimental factors, we designed hypothetical pres-
idential speeches. Specifically, participants read a short presidential speech ad-
dressing two separate issues: (1) the issue of crime in U.S. cities and (2) the
possibility of a military intervention in a hypothetical civil conflict abroad. In
the thematically relevant emotive trigger condition, an emotional, anger-inducing
story was embedded in the speech as part of the civil conflict issue. In contrast,
in the thematically irrelevant emotive trigger condition, the equivalent emotional
story was embedded in the speech as part of the issue concerning crime in U.S.
cities. No emotional story was provided in the emotion-neutral control condition.
To obtain maximum internal validity and control, all the wording used in the
scenarios across the different experimental conditions were kept constant except
for the induction and placement of the emotional story.

After their exposure to the presidential speech, participants were asked about
their risk perceptions and support concerning a possible military intervention in
said civil conflict. The response options for the question regarding the level of
perceived risk were coded as “1” for “not at all risky,” “2” for “Not too risky,”
“3” for “Somewhat risky,” “4” for “Fairly risky,” and “5” for “Very risky.” As
for the question regarding the level of support, we assigned a code of “1” for
“Not support at all,” “2” for “Not much support,” “3” for Somewhat support,”
“4” for “Fairly support,” and “5” for “Strongly support.”
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To ensure that our experimental design is internally valid, we conducted sev-
eral manipulation checks. Specifically, we asked the participants how angry they
felt about the information they were exposed to. The response options ranged
from “1” for “Not at all angry” to “5” for “Very angry.” The results show that
participants in both thematically relevant and irrelevant emotive trigger condi-
tions expressed significantly higher levels of anger compared to emotion-neutral
control condition (p < .001). This result indicates that the emotive trigger em-
bedded in the presidential speech was indeed effective in inducing anger. Fur-
thermore, there was no statistically significant difference regarding the level of
anger induced between the thematically relevant and irrelevant emotive trigger
conditions (p > .10). This result suggests that the experimental effects observed
upon exposure to emotive triggers are mainly due to the thematic relevance of
such triggers as we intended to manipulate and not due to other confounding
factors such as the variations in the intensity of the triggered emotional state.

Last, we also asked the participants whether they experience several other
emotions, including sadness, fear, worry, and anxiety in reaction to the infor-
mation they read. This is because individuals can experience several emotions
at any given moment and one emotion may nullify or mediate the impact of
another. The results demonstrate that the reported levels of fear, worry, and
anxiety are not significantly different than the emotion-neutral control condi-
tion (p > .10). Sadness is statistically significant, though the mean level of anger
(MR = X and MIR = X) is higher than the mean level of sadness (MR = X
and MIR = X) expressed by the participants in both the thematically relevant
and irrelevant conditions1. The results thus suggest that anger is the dominant
emotion induced by the experimental stimuli. In all, these manipulation checks
confirm the internal validity of our experiment.
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Abstract. A device has to function properly under all possible con-
ditions: e.g., for all temperatures within a given range, for all possible
humidity values within a given range, etc. Ideally, it would be nice to
be able to test a device for all possible combinations of these parame-
ters, but the number of such combinations is often so huge that such an
exhaustive testing is not possible. Instead, it is reasonable to check the
device for all possible values of each parameter, for each possible pairs of
values of two parameters, and, in general, for all possible combinations of
values of k parameters for some k. For n parameters, a straightforward
testing design with this property contains O(nk) ·Nk experiments, where
N is the number of tested values of each parameter. We show that, by
using a more sophisticated testing design, we can decrease the number
of experiments to a much smaller number O(logk−1(n)) ·Nk.

1 Formulation of the Problem

It is important to test a device for different combinations of parameters. Many
devices have to function correctly under many different values of the correspond-
ing parameters: e.g., for temperatures within the given range, for pressure within
the given range, for humidity within the given range, etc.

It is not possible to test all possible combinations of parameters. Ideally, we
should test the device for all possible combinations of the corresponding param-
eters. However, often, such a testing is not realistic. For example, if we have 20
possible parameters, and we consider 10 possible values of each of these parame-
ters, then testing all possible combinations would require an unrealistic amount
of 1020 tests. Even in the idealized situation when each test takes 1 second, then,
with 3 · 107 seconds in a year, this testing would require 3 · 1012 years – longer
than the lifetime of the Universe.

Solution: test for all pairs, or all triples, etc. Since we cannot test for all possible
combinations of all the parameters, we need to test at least for all possible values
of each parameter separately. In other words, we need to test the device for all
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possible values of outside temperature, then test this device for all possible values
of humidity, etc.

In this testing, we may overlook possible joint effect of two or more different
parameters. To take such an effect into account, it makes sense to arrange the
tests in such a way that for every two parameters, we test all possible combina-
tions of values. Similarly, we may want to test in such a way that for every three
parameters, we test all possible combinations of values, etc.; see, e.g., [1–4].

How to arrange such a test: first simple idea. For each parameter xi, we have a
range [xi, xi] of possible values. Let us assume that for each parameter, we test
for N different values xi1 < xi2 < . . . < xiN . In this case, we need N experiments
to test the device’s behavior for all N values of each parameter.

If we simply want to test for all possible values of each parameter, then a
straightforward idea is to first test all possible values of the first parameter x1,
then test all possible values of the second parameter x2, etc., until we have tested
all the parameters. If we denote by n the number of parameters, then this scheme
requires n ·N experiments.

If we want to test all possible pairs of parameters, then, for each of

(
n

2

)
pairs

of parameters, we test all possible N2 pairs of values. This requires

(
n

2

)
· N2

experiments.
Similarly, if we want to test all possible triples of parameters, then for each

of

(
n

3

)
triples of parameters, we test all possible N3 triples of values. This

requires

(
n

3

)
· N3 experiments. In general, if we fix an integer k, and we want

to test all possible combinations of values of each k parameters, then for each

of

(
n

k

)
k-tuples of parameters, we test all possible Nk combinations of values.

This requires

(
n

k

)
·Nk experiments.

We can test faster than that. It is easy to see that the simple straightforward
approach uses too many combinations of parameters, we can often use much
fewer experiments.

For example, if we want to test all possible values of each parameter, then in
the above straightforward approach, we perform n · N experiments. In reality,
it is sufficient to perform only N experiments. Namely, in each experiment j =
1, . . . , N , we take each parameter xi to be equal to xij :

– in the first experiment, we select the first value of each of n parameters, i.e.,
use parameters (x11, . . . , xn1);

– in the second experiment, we select the second value of each of n parameters,
i.e., use parameters (x12, . . . , xn2);

– . . .
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– in the j-th experiment, we select the j-th value of each of n parameters, i.e.,
use parameters (x1j , . . . , xnj);

– . . .
– finally, in the last (N -th) experiment, we select the N -th value of each of n

parameters, i.e., use parameters (x1N , . . . , xnN ).

When we have many parameters n ≫ 1, we then have n ·N ≫ N , so this idea
drastically decreases the number of necessary experiments – and thus, the testing
time.

Comment. In some cases, we have different number of values Ni for different

parameters xi. In this case, in the straightforward approach, we need
n∏

i=1

Ni com-

binations, but instead, we can simply use N = max(Ni) combinations: namely,
we set xij = xiNi when j > Ni. Thus, when all the values Ni are of the same
order, we still get a drastic decrease in the number of experiments.

What we do in this paper. In this paper, we show that similar faster testing is
possible when we test all possible pairs of parameters, all possible triples, etc.

2 New Testing Design: Main Idea and Step-by-Step
Description

Let us formulate the problem in precise terms. The above description leads to
the following definition.

Definition. Let n > 0, N > 0, and k > 0 be positive natural numbers. The
number n will be called the number of parameters, and the number N will be
called the number of values.

– By an experiment, we mean a tuple of n integers j1, . . . , jn, where 1 ≤ ji ≤ N
for all i. We say that in this experiment, we use the ji-th value of the i-th
parameter. An experiment will also be denoted by (x1i1 , . . . , xnjn).

– By a testing design, we mean a finite set of experiments.
– We say that a testing design tests each combination of k parameters if for ev-

ery k-tuple 1 ≤ i1 < . . . < ik ≤ N and for all k-tuples of integers v1, . . . , vk,
with 1 ≤ vℓ ≤ N , this testing design contains an experiment in which, for
all ℓ from 1 to k, we use the vℓ-th value of the iℓ-th parameter.

Main objective. Our main objective is minimize the required number of experi-
ments.

The straightforward ideas leads to a design that tests each combination of

k parameters and that consists of

(
n

k

)
· Nk experiments. As a function of the

number n of parameters, this number of experiments is O(nk) ·Nk.
For n = k, we need to test all Nk possible combinations of parameters, so

we cannot have fewer than Nk test anyway. However, as the above case of k = 1
shows, we can try to minimize the factor depending on n.
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Main Result. For each k, there exists a testing design that tests each combi-
nation of k parameters and that consists of O(logk−1(n)) ·Nk experiments.

Discussion.

– For k = 1, we get the known fact that we need O(N) experiments.
– For testing all possible pairs (k = 2), we need O(log(n)) · N2 experiments.

This is much smaller than O(n2) ·N2 experiments needed in the straightfor-
ward approach.

– For testing all possible triples (k = 3), we need O(log2(n)) ·N3 experiments.
This is much smaller than O(n3) ·N3 experiments needed in the straightfor-
ward approach.

Description of the new testing design: case of k = 2. Let B = ⌈log2(n)⌉ ∼ log(n)
be the number of bits needed to describe all the natural numbers from 0 to n−1.
Let us enumerate the bit from lowest to the highest. Let us denote the b-th bit
in the binary expansion of an integer i by bitb(i). For example, for the binary
number i = 10112 = 1110:

– the first (lowest) bit is 1: bit1(i) = 1;
– the second bit is 1: bit2(i) = 1;
– the third bit is 0: bit3(i) = 0;
– the fourth bit is 1: bit4(i) = 1, and
– all the other bits are 0s: bitb(i) = 0 for all b > 4.

Our new testing design consists of B groups of experiments. Each of these
groups consists of N2 experiments, so that total number of experiments is indeed
O(log(n)) ·N2. In the b-th group of experiments, for each pair of integers (f, s),
1 ≤ f ≤ N and 1 ≤ s ≤ n:

– we set ji = f if bitb(i− 1) = 0, and
– we set ji = s if bitb(i− 1) = 1.

If we have two different integers i1 < i2, then i1 − 1 ̸= i2 − 1, so at least one bit
b in the binary expansions of i1 − 1 and i2 − 1 is different. Thus, for this bit b,
the corresponding group of experiments tests all possible pairs (f, s).

Example: n = 4. For n = 4, we need B = 2 bits to represent integers 0, 1, 2,
and 3. Here, 010 = 002, 110 = 012, 210 = 102, and 310 = 112. Thus, in this case,
we have two groups of N2 experiments each:

– In the first group of experiments, we assign s to all the values i for which
bit1(i−1) = 0, and f to all the values i for which bit1(i−1) = 1. Thus, each
experiment has the form (f, s, f, s).

– In the second group of experiments, we assign s to all the values i for which
bit2(i−1) = 0, and f to all the values i for which bit2(i−1) = 1. Thus, each
experiment has the form (f, f, s, s).

If i1 < i2 are both odd or both even, then the second group of experiments tests
all possible combinations of the values of the corresponding parameters. If one
of the values i1 and i2 is odd and another value is even, then the first group of
experiments tests all possible combinations of values.
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Description of the new testing design: case of k > 2. To describe the testing
design for k > 2, we use the following recursive algorithm that reduces a testing
design for given k and n to a testing designs for smaller k and n.

For n = k, we just have to test all Nk possible combinations of values of all
k parameters.

For n > k, we divide the set of n parameters into two halves of size n/2.
Then:

– To cover situations when all k parameters are in the first half and situations
when all k parameters are in the second half, we use the testing design for
n/2 and k; each experiment in this design is copied for the second half, so,
e.g., a design fs becomes fsfs (see example below).

– To cover situations in which k − 1 parameters are in the first half and 1
parameter is in the second half, we combine each experiment from testing
plan for n/2 and k − 1 with each experiment from the testing plan for n/2
and 1.

– To cover situations in which k − 2 parameters are in the first half and 2
parameters are in the second half, we combine each experiment from testing
plan for n/2 and k − 2 with each experiment from the testing plan for n/2
and 2.

– . . .
– To cover situations in which k − i parameters are in the first half and i

parameters are in the second half, we combine each experiment from testing
plan for n/2 and k − i with each experiment from the testing plan for n/2
and i.

– . . .
– Finally, to cover situations in which 1 parameter are in the first half and

k − 1 parameters are in the second half, we combine each experiment from
testing plan for n/2 and k − 1 with each experiment from the testing plan
for n/2 and 1.
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Abstract. Solving large games is a key research challenge for real world ap-
plications of game theory. An important technique is using abstraction to sim-
plify the game before performing further analysis, such as finding an equilib-
rium. For example, this approach has been instrumental in designing successful
Poker-playing agents. We consider the problem of abstraction in general normal-
form games, and in particular, how an agent should select a strategy based on an
abstracted game model. While most previous work focuses on using abstraction
to find equilibrium solutions, we show that playing according to the equilibrium
of an abstracted game can lead to very poor outcomes. We present an extensive
experimental analysis of abstraction in normal form games that includes several
different forms of abstraction and several different solution concepts for analyz-
ing the abstracted games. Our experiments show that robust solution methods
outperform Nash equilibrium when reasoning based on abstracted games.

1 Introduction

Solving large games is one of the central research challenges in computational game
theory [4]. Progress on scalable algorithms for game-theoretic analysis has proven im-
portant for real world applications such as homeland security [7]. Applying game theory
to these problems requires formulating and analyzing very large game. Abstraction has
emerged as an important technique for scaling game theory. For example, recent work
on designing Poker agents competitive with humans has relied heavily on advances in
automated abstraction methods for games [5]. The basic approach is to apply abstraction
to drastically shrink the size of the game, and then to apply state of the art algorithms to
find solutions to the abstracted games. A reverse mapping algorithm is use to map the
solution back into a strategy that can be played in the original, unobstructed game.

We take the perspective of a player trying to use an abstracted game model to choose
a strategy to play; this is known as the strategy selection problem. There is a fundamen-
tal conceptual problem with using a Nash equilibrium to select a strategy to play. The
abstracted game is an imperfect representation of the original game, and it has been
shown that Nash equilibrium is not robust to uncertainty about the game model [1]. We
hypothesize that the success of Nash equilibrium combined with abstraction in games
such as Poker is closely ties to the zero-sum properties of the game.

We investigate strategy selection problems with abstraction empirically using the
framework of meta-games [1]. In the abstraction meta-game, each player receives a
different abstraction of the original game and selects a strategy based on this abstraction.
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The results of the strategy selections evaluated in the context of the original game. Using
this framework, we run experiments with several different kinds of abstractions on both
general-sum and zero-sum games, and evaluate several different methods for strategy
selection. We show that Nash equilibrium can lead to unbounded losses when using
abstraction, and that in general if performs poorly as a strategy selection method.

2 Abstracting Normal Form Games

Original	  Game	  

Abstracted	  Game	  

Abstrac2on	  Algorithm	  

Solu2on	  	  
Algorithm	  

Reverse	  Strategy	  	  
Mapping	  

Game	  Analysis	  Using	  Abstrac2on	  

Fig. 1. Solving a game using abstraction.

A finite normal-form game is defined by a tu-
ple (N,A, u), where N is a set of n players,
A = A1× · · · ×An is the set of actions, with
Ai denoting the set of actions available to
player i, and u = (u1, . . . , un) represent the
utility (payoff) functions for each player [6].
Each utility function ui : A 7→ R gives a
real-valued payoff for player i for every pos-
sible combination of actions. Actions are also
called pure strategies. Mixed strategies are
defined as the set of possible probability dis-
tributions over a player’s pure strategies, de-
noted by S = S1 × · · · × Sn. For a mixed
strategy si we use si(ai) to denote the proba-
bility of playing action ai. We define the ex-
pected utility (payoff) for player i for a profile
of mixed strategies s = (s1, . . . , sn) as:

ui(s) =
∑
a∈A

ui(a)
n∏

j=1

sj(aj) (1)

We write s = (si, s−i) to refer to the profile where player i plays si and the other
players play according to the profile s−i. A best response strategy for player i to a pro-
file of opponent strategies s−i is a strategy s∗i such that ui(s∗i , s−i) ≥ ui(si, s−i)∀si ∈
Si. We define the benefit to deviating for player i from strategy profile s is defined
as εi(s) = maxs′i∈(Si\si)(ui(s

′
i, s−i) − ui(si, s−i)). The overall benefit to deviating

from a strategy profile is the maximum benefit to deviating for any player, ε(s) =
maxi∈N εi(s). A Nash equilibrium is a strategy profile s such that no player has a pos-
itive benefit to deviating, so ε(s) ≤ 0. If a strategy profile has a positive value of ε(s) it
is as an approximate ε-Nash equilibrium.

An abstraction of a game simplifies the original game representation in some way.
Figure 1 shows how the process works from the perspective of a single player. First, an
abstraction algorithm is applied to compute the abstracted game representation. Then,
a game analysis algorithm (such as an equilibrium solver) is applied to analyze the
abstracted game and produce a solution. Since the strategy space of the abstracted game
may not match the original game, a reverse mapping algorithm is applied to map back
to strategies in the original game. There are many different approaches for abstracting
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a game, and out purpose is not to find the best abstraction, but rather to investigate the
implications of abstraction for strategic reasoning. Therefore, we start by studying two
basic methods for abstracting games.

Random Removal: This abstraction method randomly removes a subset of the
strategies for each player from the original game; the payoffs remain the same for the
remaining strategy profiles. The reverse mapping uses the same probability for each
action that is not removed during abstraction, and 0 for any removed strategies.

Payoff Bucketing: This abstraction method focuses on payoffs rather than the
actions by reducing the granularity of the payoffs. For a given number of buckets b we
divide the full range of possible payoffs urange = maxs,i ui(s) − mins,i ui(s) into b
equally-sized intervals, each of size urange

b . Then, we map each payoff in the original
game to the corresponding interval and set the payoff in the abstracted game to the
midpoint of this interval. The set of actions is identical to the original game.

3 Nash Equilibrium in Abstracted Games

Abstraction Meta-Game 
E F G H 

A 4,4 6,2 1,3 -100,
-100 

B 2,7 3,9 3,3 4,5 
C 1,7 5,2 1,4 5,2 
D 2,6 4,1 6,5 7,8 

E F 
A 4,4 6,2 
C 1,7 5,2 

G H 
B 3,3 4,5 
D 6,5 7,8 

Player 2 Player 1 

Game 
Abstraction 

Strategy 
Selection 

(A) 

Strategy 
Selection 

(H) 

Game 
Abstraction 

Fig. 2. The meta-game when two players
use different abstractions.

We now consider the problem of selecting
strategies to play using abstracted game mod-
els. One approach for selecting a strategy is to
solve the abstracted game for a Nash equilib-
rium (or approximation), and to play the equi-
librium strategy. However, it is not obvious
that choosing based on an equilibrium analy-
sis will lead to desirable outcomes, since the
equilibrium strategy is only a best response if
the opponent’s strategy is correctly predicted
by the equilibrium.

In fact, we can construct examples where
playing according to the Nash equilibrium of
an abstracted game can lead to unbounded
losses. Consider the meta-game [1] in Fig-
ure 2. There are two players in the origi-
nal game, with four actions for each player.
Both players apply random removal abstrac-
tion, reducing the game from 4 × 4 to 2 × 2
actions. It is important to note that the play-
ers do not necessarily compute the same abstracted game in our model. The players
must reason based on different views of the game, and they may not know exactly what
abstracted game the other players are using. The players reason about the abstracted
games, select strategies to play, map the strategies back into the original game, and
receive the corresponding payoffs in the original game.

For the example in Figure 2, both players play according to a Nash equilibrium of
their abstracted game (the circled profiles in the small games). These are the only pure-
strategy equilibria of the abstracted games, and they are based on dominant strategies.
However, when the actions are played in the original game, the players choose strategy
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profile (A,H), which is not an equilibrium of the original game, and is by far the worst
outcome for both players. We could replace the payoffs of −100 with arbitrarily large
negative values, so the potential loss to the players is unbounded.

4 Game Analysis Methods

In the previous section we demonstrated that playing according to a Nash equilibrium
may not result in good outcomes for players reasoning based on abstracted games. We
now introduce several other methods for selecting strategies which take as input an
abstracted game and a player, and return a mixed strategy for the player.

Uniform Random (UR): This method always returns the uniform random mixed
strategy that selects all actions with equal probability.

Best Response to Uniform (BRU): This method assumes that all players other then
the selected player will play the uniform random strategy, and plays a best response to
this uniform distribution.

Logistic Quantal Response Equilibrium (LQRE): Quantal Response Equilib-
rium (QRE) [3] modifies the standard notion of Nash equilibrium by replacing the best
response function with a noisy best response function. In a QRE, the strategies are
noisy best responses to one another. The most common form of QRE uses a logistic
distribution to specify the noisy best response in the following form:

si(ai) =
exp(λ · ui(ai, s−i))

exp(
∑

a′
i∈Ai

λ · ui(a′i, s−i))
(2)

The parameter λ specifies the amount of noise in the distribution. As λ 7→ 0 the re-
sponse approaches a uniform random strategy, and as λ 7→ ∞ the response approaches
the best response function (and therefore LQRE converges to Nash). We compute LQRE
using Gambit [2], specifically the gambit-logit solver [8] . The strategy selected by our
method is a best response to the LQRE, so we assume noise only for predicting the
other player’s choices.

Nash Equilibrium (NE): This method plays according to a mixed strategy equi-
librium of the abstracted game. We again use Gambit [2] to solve for a mixed strategy
Nash equilibrium of the game.

Approximate Pure Strategy Nash Equilibrium (APSNE): This method focuses
on the pure strategy profiles of the game, and selects a strategy according to the most
stable profile (the one with the smallest benefit to deviating, ε(s)). In cases where there
is at least one pure strategy Nash equilibrium, this will select one of these Nash equi-
libria that has the largest loss for deviating.
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